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Abstract

Mixed Logit is an advanced and flexible tool for the study of discrete choice problems.
However, this flexibility involves computationally intensive calculations, as the estimation
of Mixed Logit models requires the simulation of integrals. In addition, the specification of
Mixed Logit models requires decisions such as potential explanatory variables to be included
in the model as well as their mixing distributions. This specification process involves testing
and estimation of different combinations of variables and mixing distributions, which is time
consuming and computationally intensive. In response, this paper introduces xlogit, an open-
source Python package that leverages the performance of graphic processing units (GPU)
for an efficient estimation of Mixed Logit models. For benchmarking, the performance of
xlogit was compared against the PyLogit and Biogeme Python packages as well as the mlogit,
Apollo, gmnl, and mixl R packages. Artificially generated as well as actual data were used
to evaluate the performance gains provided by xlogit. Results suggest that using a mid-
range graphics card and a regular desktop computer, xlogit is in average 55x faster than
Apollo, 43x faster than Biogeme, 74x faster than gmnl, 39x faster than mixl, 16x faster
than mlogit, and 27x faster than PyLogit, with an additional advantage of efficient memory
management. The performance gains provided by xlogit facilitate an efficient modeling
process, as it enables the testing of a large number of model specifications more efficiently
relative to existing software packages. xlogit ’s open source code, documentation, and usage
examples are publicly available in the package’s GitHub repository.
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1. Introduction1

Discrete choice models are widely applied in many contexts, including analysis of con-2

sumer preferences, travel behavior, and traffic crash severity (Train, 2003; Ben-Akiva and3

Lerman, 1985). Mixed Logit is one of the most prominent techniques for discrete choice4

modeling because of its flexibility and ability to approximate any random utility specifica-5

tion (McFadden and Train, 2000). They allow a flexible error structure and unrestricted6
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substitution patterns. Unlike Probit models, Mixed Logit models are not constrained to7

normal parameter distributions, which enables a wider range of applications by providing8

extra flexibility. Various applications of Mixed Logit models include taste heterogeneity in9

mode choice behavior (Vij and Krueger, 2017), health study preferences (Raspa et al., 2020),10

neighborhood choice (Wang et al., 2020), and road crash analyses (Intini et al., 2020). De-11

spite the advantages of Mixed Logit models, there are significant difficulties in effectively12

developing and applying these models in a time-efficient manner. In the process of specifying13

these models, a series of assumptions must be made and subsequently verified. Hence, it is14

important to develop tools that can help analysts to efficiently test a large number of model15

specifications.16

Several proprietary and open-source tools are available for the estimation of Mixed Logit17

models (Mariel et al., 2021). Popular proprietary tools include STATA (StataCorp, 2019)18

and NLogit (Greene, 2012), and well-known open-source tools include the PyLogit Python19

package (Brathwaite and Walker, 2018), the Biogeme Python package (Bierlaire, 2020), the20

mlogit R package (Croissant, 2020), the Apollo R package (Hess and Palma, 2019), the mixl21

R package (Molloy et al., 2021), and the gmnl R package (Sarrias and Daziano, 2017). The22

discussion and benchmark conducted in this paper focuses on open-source tools, given that23

the proprietary tools have licensing requirements for usage. Existing open-source tools offer24

a rich set of features for specification of Mixed Logit models, such as the ability to work25

with panel data, handling of unbalanced panels, and inclusion of individual and alternative26

specific variables. In addition, these open-source tools allow the incorporation of several27

types of mixing distributions, such as normal, log-normal, triangular, and uniform, except28

for PyLogit, which only allows normal mixing distributions.29

Although the existing open-source tools for the estimation of Mixed Logit models have30

significantly contributed to the research and practice in statistical analyses, these tools are31

limited by their running times, as Mixed Logit models are computationally intensive. This32

can be a strong limiting factor in several scenarios. First, slow estimation times can be in-33

convenient when analysts need to test several model specifications before deciding on a final34

specification. Second, the amount of data available for analysis have significantly increased35

due to the extensive adoption of technology and telecommunications. Therefore, data analy-36

sis tools need to evolve to keep up with the increasing demand in volume processing capacity.37

Third, despite the widespread practice of estimating models using only a few hundred ran-38

dom draws, past studies have highlighted the importance of using a larger number of draws39

(Czajkowski and Budziński, 2019; Chiou and Walker, 2007), as failing to do so may hide40

serious identification problems. Given that the use of many random draws can be impor-41

tant in model estimation, estimation efficiency becomes a crucial factor, which is one of the42

aspects the developed xlogit package seeks to enhance. Finally, slow estimation times limit43

the leveraging of recently proposed approaches for the assisted specification of Mixed Logit44

models, such as the ones proposed by Paz et al. (2019); Ortelli et al. (2020) and Rodrigues45

et al. (2019), that require iterative testing of a large number of model specifications, which46

can be excessively time consuming using existing estimation tools.47

The existing mlogit, PyLogit, and gmnl packages lack a built-in capability to perform48

parallel processing to reduce estimation time. On the other hand, the Apollo, Biogeme,49

and mixl packages can leverage multiple processor threads for parallel processing, which has50

been shown to help reduce the estimation time (Hess and Palma, 2019). However, despite51
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the multi-thread processing capabilities of Apollo, Biogeme, and mixl, their estimation times52

are still high, even when using many processor threads, as it will be shown later in the53

benchmark section. In view of the performance limitations of existing estimation packages,54

this paper introduces xlogit as an alternative estimation tool that leverages GPU processing55

to significantly speed-up the estimation of Mixed Logit models and escalate to estimations56

using hundreds of thousands of random draws.57

2. Mixed Logit models58

2.1. Formulation59

Logit-based models, including Mixed Logit, assume that a decision maker chooses an60

alternative among a set of finite and mutually-exclusive alternatives based on explanatory61

variables that include attributes of the decision maker and the alternatives. Under the62

assumptions of the Random Utility Maximization theory (Manski, 1977), the decision maker63

chooses the alternative that maximizes their utility or benefit. The following notations are64

used to discuss the mathematical formulation of Mixed Logit models:65

n: subscript for a decision maker; n = {1, 2, . . . , N}66

j: superscript for a choice alternative; j = {1, 2, . . . , J}67

k: subscript for an explanatory variable; k = {1, 2, . . . , K}68

xjnk: value of explanatory variable k, for decision maker n and alternative j.69

yjn: choice variable equal to one if decision maker n chooses alternative j, zero otherwise.70

βk: coefficient for explanatory variable k.71

The linear definition of utility for Logit-based models is given by Equation 1.72

V j
n = β1x

j
n1 + β2x

j
n2 + · · ·+ βKx

j
nK =

K∑
k=1

βkx
j
nk = βxjn (1)

where V j
n is the observed utility that a decision maker n obtains from choosing alternative73

j. βxjn represents the linear product between all the coefficients βk and the explanatory74

variables xjnk. The probability P c
n of an individual n choosing alternative c, is given by75

Equation 2. Note that this probability is a function of the parameters β. The objective of76

the estimation process is to find the set of β parameters that best fit the input data.77

P c
n(β) =

∫
eβx

c
n

J∑
j=1

eβx
j
n

f(β)dβ (2)

When decision makers have repeated choices or choices across multiple time periods in78

a panel structure, the probability of the sequence of choices is expressed as the product of79

the probabilities at each period t (t = 1, 2, . . . T ), as shown in Equation 3 (Train, 2003),80
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where βx
j(t)
n represents the observed utility at time period t. For simplicity, the remaining81

equations in this section omit the panel indicator (t).82

P c
n(β) =

∫ T∏
t=1

eβx
j(t)
n

J∑
j=1

eβx
j(t)
n

f(β)dβ (3)

The likelihood, as expressed in Equation 4, is a measure of the goodness of fit of the83

parameters, computed as the product of the probabilities of the chosen alternatives for all84

the decision makers in the dataset.85

L(β) =
N∏
n=1

J∏
j=1

(P j
n)y

j
n (4)

2.2. Estimation86

The parameter estimation for discrete choice models is defined as a non-linear mini-87

mization problem, using the likelihood function as the optimization target (Bunch, 1987).88

Gradient-based iterative methods are generally applied under the global concavity assump-89

tion for the parameter search. The gradient (first derivatives of the likelihood function) and90

Hessian (second derivatives of the likelihood function) are critical components of parame-91

ter estimation, as these determine the search direction to obtain parameters with higher92

log-likelihood values. Standard Newton-based methods require the estimation of gradient93

and Hessian at every iteration, resulting in increased computational time. Therefore, Quasi-94

Newton methods, which use Taylor series approximation for Hessian estimation, are pop-95

ularly applied due to their computational efficiency. The methods include BHHH (Berndt96

et al., 1974), BFGS (Broyden-Fletcher-Goldfarb-Shanno), and Limited-Memory BFGS, as97

they are found to perform faster than the standard method (Liu and Nocedal, 1989). Irre-98

spective of the method, the estimation process requires the computation of the log-likelihood,99

which is the objective function of the optimization routine, and the gradient vector. The fol-100

lowing subsections provide a discussion of how the log-likelihood and gradient are computed101

in the context of Mixed Logit models.102

2.2.1. Simulated probabilities and log-likelihood103

Although the computation of Mixed Logit probabilities involves an integral that cannot104

be solved analytically, numerical simulation techniques can be applied to approximate this105

integral (Revelt and Train, 1998). Maximum simulated likelihood relies on the idea that106

integration over a density is a form of averaging (Train, 2003). Mixed Logit probabilities107

are simulated by taking multiple random draws R from the assumed distribution of βk. The108

simulated probability P̌ c
n is estimated by taking an average of the probabilities for each of109

the draws r, as shown in Equation 5, where βr represent the coefficients at random draw r.110

P̌ c
n(β) =

1

R

R∑
r=1

eβrx
c
n

J∑
j=1

eβrx
j
n

(5)
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The simulated likelihood Ľ is the same as in Equation 4 after replacing the probability111

P c
n by the simulated probability P̌ c

n, as shown in Equation 6. The log of the likelihood is used112

instead of the likelihood, given that float point precision issues arise when the computation113

of the likelihood includes the product of small probability numbers. Using the log of the114

likelihood translates the products of probabilities to summations.115

log[Ľ(β)] =
N∑
n=1

J∑
j=1

yjn · log(P̌ j
n) (6)

2.2.2. Gradient116

The gradient function for logit-based models is given by Equation 7 (Train, 2003), which117

results in Equation 8 after some algebraic manipulations (Hasan et al., 2016).118

∂log[Ľ(β)]

∂βk
=

N∑
n=1

J∑
j=1

yjn
∂ log(P̌ j

n)

∂βk
(7)

∂log[Ľ(β)]

∂βk
=

N∑
i=n

J∑
j=1

(yjn − P̌ j
n)xjnk (8)

In Mixed Logit models, the gradient for the random coefficients βk is decomposed into its119

mean (βkb) and standard deviation (βkw). Therefore, depending on the distribution of the120

random coefficient, the gradient with respect to the βkb and βkw coefficients take different121

forms as follows:122

• A coefficient with normal distribution is expressed as βk = βkb + βkwη, and the123

gradients for the βkb and βkw coefficients are shown in Equations 9 and 10, respectively,124

where η are standard normal random draws.125

∂log[Ľ(β)]

∂βkb
=

N∑
i=n

J∑
j=1

(yjn − P̌ j
n)xjnk (9)

126

∂log[Ľ(β)]

∂βkw
=

N∑
i=n

J∑
j=1

(yjn − P̌ j
n)xjnkη (10)

• A coefficient with lognormal distribution is expressed as βk = eβkb+βkwη, and the127

gradients for the βkb and βkw coefficients are shown in Equations 11 and 12, respectively,128

where η are standard normal random draws.129

∂log[Ľ(β)]

∂βkb
=

N∑
i=n

J∑
j=1

(yjn − P̌ j
n)xjnke

βkb+βkwη (11)

130

∂log[Ľ(β)]

∂βkw
=

N∑
i=n

J∑
j=1

(yjn − P̌ j
n)xjnkηe

βkb+βkwη (12)
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• A coefficient with uniform distribution is expressed as βk = βkb + βkw(2µ − 1),131

and the gradients for the βkb and βkw coefficients are shown in Equations 13 and 14,132

respectively, where µ are uniform random draws between zero and one.133

∂log[Ľ(β)]

∂βkb
=

N∑
i=n

J∑
j=1

(yjn − P̌ j
n)xjnk (13)

∂log[Ľ(β)]

∂βkw
=

N∑
i=n

J∑
j=1

(yjn − P̌ j
n)xjnk(2µ− 1) (14)

• A coefficient with triangular distribution is expressed as βk = βkb + βkwτ and the134

gradients for the βkb and βkw coefficients are shown in Equations 15 and 16, respectively,135

where τ =
√

2µ−1 if µ < .5 or τ = 1−
√

2(µ− 1) if µ > .5 and µ are uniform random136

draws between zero and one.137

∂log[Ľ(β)]

∂βkb
=

N∑
i=n

J∑
j=1

(yjn − P̌ j
n)xjnk (15)

138

∂log[Ľ(β)]

∂βkw
=

N∑
i=n

J∑
j=1

(yjn − P̌ j
n)xjnkτ (16)

3. Proposed xlogit package139

The main motivation behind xlogit is to take advantage of the fast parallel computations140

that GPUs offer, in order to reduce the estimation time for Mixed Logit models and escalate141

to estimations using hundreds of thousands of random draws. This section introduces the142

primary features of xlogit, explains how it leverages GPU processing for estimation, and143

describes its installation and usage.144

3.1. Features145

xlogit offers a comprehensive set of tools for the estimation of Mixed Logit models. How-146

ever, xlogit is not limited to Mixed Logit or random parameter models only, it also supports147

the estimation of models with fixed parameters. These can be models with only individual148

specific parameters (i.e., Multinomial Logit models), models with only alternative specific149

variables (i.e., Conditional Logit models), or models that combine individual and alternative150

specific parameters. The current version of xlogit only supports models that have a linear151

definition of the deterministic part of the utility function. The following list summarizes the152

functionalities and types of models that the current version of xlogit supports.153

• Mixed Logit with several types of mixing distributions (normal, lognormal, triangular,154

uniform, and truncated normal)155

• Mixed Logit with panel data156

• Mixed Logit with unbalanced panel data157
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• Mixed Logit with Halton draws158

• Multinomial Logit models159

• Conditional Logit models160

• Handling of unbalanced availability of choice alternatives for all of the supported mod-161

els162

• Post-estimation tools for prediction and specification testing163

• Inclusion of sample weights for all of the supported models164

• Batch processing of random draws to easily escalate to model estimation using hundreds165

of thousands of random draws166

For model estimation, xlogit uses the Maximum Simulated Likelihood Estimator (MSLE)167

and the BFGS (Fletcher, 1981) optimization routine. The optimization routine uses both168

the simulated log-likelihood function expressed in Equation 6 and the analytical gradients169

from Equations 9 to 16 to estimate the model parameters. xlogit uses analytical gradients,170

instead of finite differences approximations of the gradient, given that this enables efficient171

estimation by reducing the number of required objective function evaluations.172

xlogit ’s source code is openly available at the GitHub public repository http://github.173

com/arteagac/xlogit. In this repository, it can be observed that xlogit has been developed174

following practices that seek to maximize the quality of the code. Such practices include:175

(i) automated code checking with unit tests and continuous integration176

(ii) compliance with styling and naming conventions defined by Python’s PEP8 standard177

(iii) comprehensive code documentation using doc-string conventions178

Detailed instructions and several usage examples are provided in the documentation of179

the package available at http://xlogit.readthedocs.io. In addition, a guide to contribute180

to the project is provided in xlogit ’s repository, in order to facilitate open-source community181

contributions.182

3.2. Leveraging GPU processing183

The large number of processor cores that GPUs contain offer a significant speed advan-184

tage over those of CPUs for operations of homogeneous nature on different pieces of data.185

GPUs are throughput oriented, which means that they are designed for the efficient pro-186

cessing of many similar tasks simultaneously (data parallel) (Matthews, 2018). Although187

this feature was initially designed for application in computer graphics, several numerical188

computing tasks, such as linear algebra operations, fast Fourier transforms, random num-189

ber generation, and solving differential equations, have also benefited from this fast parallel190

processing (Kindratenko, 2014).191

The task of estimating a Mixed Logit model involves several linear algebra operations192

between the input data and the estimable parameters. The computation of log-likelihood193

and gradient values are the most time expensive operations, as they require numerous matrix194
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products and aggregations across the random parameter draws. Using a large number of ran-195

dom draws can enhance the estimation results, as this benefits the numerical approximation196

of the parameters’ mixing distributions. However, the increase in random draws imposes197

additional operations for the log-likelihood and gradient estimations, which consequently,198

increases the estimation time. To address this issue, xlogit leverages the fast parallel com-199

putations offered by GPUs to significantly reduce estimation times. In order to efficiently200

leverage GPU’s capabilities, xlogit avoids sequential matrix operations, and instead handles201

extensive matrix products in parallel by expressing these in terms of multidimensional array202

computations that GPUs can process efficiently. For instance, to compute the log-likelihood203

for all the individuals in the dataset across multiple random draws, xlogit does not sequen-204

tially iterate over individuals or random draws but instead it operates the multidimensional205

arrays of random draws and input data in a single computation expression that is efficiently206

distributed across all the GPU cores. The current version of xlogit only supports GPU207

processing on NVIDIA CUDA-enabled cards, as CUDA has the most mature and largely208

adopted platform for general purpose computing with GPUs (Misic et al., 2012).209

Continuous developments in GPU manufacturing have significantly enhanced their pro-210

cessing power, while maintaining reasonable prices for general consumers. As of December211

2020, there exist several low-cost and even free alternatives to access GPU computing re-212

sources. For instance, Google Colaboratory offers free GPU resources for learning purposes213

in a Python environment with no setup required, as the service can be accessed using a web214

browser (Colab, 2020). Cloud GPU resources are also available at less than $1 USD per215

hour. For instance, the Google Cloud platform offers GPU processing starting at $0.45 USD216

per hour for a NVIDIA Tesla K80 GPU with 4,992 CUDA cores (GCloud, 2020). Amazon217

Sagemaker offers virtual machine instances with the same TESLA K80 GPU at a similar218

price range (AWS, 2020). For non-cloud or desktop GPU options, there exist a variety of219

alternatives that do not require an excessively elevated budget. For instance, a low-end,220

yet powerful, NVIDIA 1650 Super GPU with 1,280 CUDA cores, which can significantly221

reduce numerical computation times, has a suggested retail price of $160 USD (DelRizzo,222

2019). A much more powerful option is the recently released NVIDIA RTX 3080, which has223

8,704 CUDA cores and a suggested retail price of $700 USD (NVIDIA, 2020); this is less224

affordable than other options, but still within the price range of computing devices for the225

general public. The high power and relatively low cost of GPU computing devices constitute226

a great alternative to address large numerical computations.227

3.3. Installation228

xlogit requires Python 3.6 or superior, and it can be installed using the pip package229

manager by executing:230

pip install xlogit231

The pip package manager is usually available as part of Python’s installation and can be232

accessed from the command line of the operating system. xlogit has been extensively tested,233

mostly in Linux and Windows operating systems; however, it is expected to work on any234

operating system that can provide a fully functional Python environment, such as macOS235

or BSD.236
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To enable GPU processing, it is necessary to additionally install the CuPy Python package237

(Okuta et al., 2017). Once xlogit detects that CuPy is properly installed, it automatically238

enables GPU processing without any additional setup. The installation of CuPy is simple,239

and detailed instructions can be found at this package’s website.240

3.4. Usage241

xlogit provides an intuitive set of commands for model estimation. The following example242

illustrates the estimation of a Mixed Logit model using xlogit on a dataset of 1,182 choices243

among four sport fishing modes. The goal is to analyze the market shares of four alternatives244

(i.e., beach, pier, boat, and charter) based on their cost and fish catch rate (Cameron and245

Trivedi, 2005). Figure 1 illustrates how to use xlogit to estimate the model parameters. The246

data to be analyzed can be imported to Python using any preferred method. In this example,247

the data in CSV format was imported using the popular pandas Python package (McKinney,248

2010) for handling dataframes. However, it is worth highlighting that xlogit does not depend249

on the pandas package, as xlogit can take any array-like structure as input. This represents250

an additional advantage because xlogit can be used with any preferred dataframe library,251

and not only with pandas.252

Once the data is in the Python environment, xlogit can be used to fit the model, as253

shown in Figure 1. The MixedLogit class is imported from xlogit, and its constructor is254

used to initialize a new model. The fit method estimates the model using the input data255

and estimation criteria provided as arguments to the method’s call. The following are the256

main arguments and data types accepted by the fit method. Other arguments, such as the257

convergence criteria, random draw type, initial coefficient values, and verbosity levels, are258

described in xlogit ’s documentation.259

• X: 2-D array of input data with choice situations as rows, and variables as columns260

• y: 1-D array of choices261

• varnames: 1-D array of variable names262

• alts: 1-D array of alternative indexes or an alternatives list263

• ids: 1-D array of the ids of the choice situations264

• randvars: dictionary of variables and their mixing distributions265

• n draws: number of random draws to use in the estimation (optional, default 1,000)266

• panels: 1-D array of indexes for panel formation (optional)267

• avail: 1-D array of availability of alternatives for the choice situations (optional)268

After the model is estimated, the summary method can be used to show the model’s esti-269

mation results. The output of the summary method is shown in Figure 1. First, information270

about the optimization process, such as the convergence status, number of iterations, and271

estimation time, is presented. Second, a table with coefficient names, estimates, standard272
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Figure 1: Usage example on fishing dataset

errors, and p-values is provided. Third, goodness of fit metrics, such as the log-likelihood,273

AIC, and BIC, are displayed.274

xlogit also provides a convenient set of post-estimation tools for prediction or forecasting.275

The predict function uses estimated parameters and a new or updated dataset to compute276

predicted choices. By default, predict returns the chosen alternative for each individual277

in the dataset. By including the return freq parameter, predict additionally returns278

the aggregated market shares for each alternative. Also, by including the return proba279

parameter, predict returns a 2-D array with individuals as rows, and the probability of280

choosing each alternative as columns. Figure 2 illustrates an example of the predict function281

that uses the model estimated in Figure 1 to forecast changes in market shares (choice282

frequency) for fishing modes caused by an increase in price for the “boat” mode. First,283

base market shares are computed by running predict on the original dataset. Then, an284

increase of 20% in the price for the “boat” alternative is applied to the dataset and the285

updated shares are predicted. The output shows that the 20% price increase would result286

in a decrease of almost 10% in market share for the “boat” alternative. Besides prediction,287
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users may also need to conduct model specification tests after model estimation. For this288

purpose, xlogit provides the lrtest (likelihood ratio test) function, which evaluates whether289

the observed difference in goodness of fit between two models (one general and one restricted)290

is statistically significant. Usage examples and additional details and for the lrtest function291

are provided in xlogit ’s documentation.292

Figure 2: Example of prediction code

4. Examples293

In order to showcase xlogit ’s features and demonstrate that it provides a comprehensive294

set of tools for model estimation, this section presents three estimation examples using dif-295

ferent datasets: the swissmetro dataset, an artificially generated dataset, and a dataset of296

electricity supplier choices. The heterogeneous characteristics of these datasets will help to297

demonstrate that xlogit provides sufficient flexibility to accommodate diverse model speci-298

fication needs. In addition, each example includes a comparison against estimates from the299

Apollo, Biogeme, mlogit, and gmnl packages, in order to show that xlogit ’s estimates are300

consistent with those provided by existing estimation tools.301

4.1. Swissmetro dataset302

The swissmetro dataset contains stated-preferences for three alternative transportation303

modes that include car, train and a newly introduced mode: the swissmetro. This dataset is304

commonly used for estimation examples with the Biogeme and PyLogit packages. Bierlaire305

et al. (2001) provides a detailed discussion of the data as wells as its context and collection306

process. The explanatory variables in this example include the travel time (TT) and cost307

(CO) for each of the three alternative modes. This dataset has a panel structure, given that308

multiple choice situations were presented to each of the survey respondents. Figure 3 shows309

the code for the estimation that includes four steps: 1) reading the input data, 2) reshaping310

it to long format, 3) creating a model specification, and 4) running the estimation procedure.311

• Step 1. Read and pre-process data: The dataset is imported to the Python environ-312

ment using pandas. Then, two types of samples, ones with a trip purpose different to313
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Figure 3: Estimation code for swissmetro dataset

commute or business and ones with an unknown choice, are filtered out. The original314

dataset contains 10,729 records, but after filtering, 6,768 records remain for following315

analysis. Finally, a new column that uniquely identifies each sample is added to the316

dataframe and the CHOICE column, which originally contains a numerical coding of317

the choices, is mapped to a description that is consistent with the alternatives in the318

column names.319

• Step 2. Reshape data to long format: The imported dataframe is in wide format,320

and it needs to be reshaped to long format for processing by xlogit, which offers the321

convenient wide to long utility for this reshaping process. The user needs to specify322

the column that uniquely identifies each sample, the names of the alternatives, the323

columns that vary across alternatives, and whether the alternative names are a prefix324
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or suffix of the column names. Additionally, the user can specify a value (empty val)325

to be used by default when an alternative is not available for a certain variable.326

• Step 3. Create model specification: Following the reshaping, users can create or update327

the dataset’s columns in order to accommodate their model specification needs, if328

necessary. Step 3 in Figure 3 shows an example in which the columns ASC TRAIN and329

ASC CAR were created to incorporate alternative-specific constants in the model. In330

addition, the example illustrates an effective way of establishing variable interactions331

(e.g., trip costs for commuters with an annual pass) by updating existing columns332

conditional on values of other columns. Although apparently simple, column operations333

provide users with an intuitive and highly-flexible mechanism to incorporate model334

specification aspects, such as variable transformations, interactions, and alternative335

specific coefficients and constants.336

• Step 4. Estimate model parameters: As shown in Step 4 of Figure 3, the fit method337

estimates the model by taking as input the data from Step 3 along with additional338

specification criteria, such as the distribution of the random parameters (randvars),339

the number of random draws (n draws), and the availability of alternatives for the340

choice situations (avail). Once the estimation routine is completed, the summary341

method can be used to display the estimation results.342

Table 1 shows the estimates returned by xlogit as well as those provided by Apollo and343

Biogeme. The negative signs for the cost and time coefficients suggest that decision makers344

experience a general disutility with alternatives that have higher waiting times and costs,345

which conforms to the underlying decision making theory. The estimation results indicate346

a high degree of similarity between the estimates returned by xlogit and those provided by347

Apollo and Biogeme. The “Ratio” column shows the average ratio between the coefficients348

of the three compared packages. The fact that all the ratios are very close to one (with a349

maximum ratio of 0.01) indicates that the estimated coefficients are highly similar across350

packages. The slight differences observed in the result comparisons are deemed reasonable351

due the different internal mechanisms that the tested packages use to process the data,352

such as different order of arithmetic and matrix operations, which affects floating-point353

precision, different ways in which Halton draws are generated, and differences in optimization354

sub-routines (Truong et al., 2019; Blelly et al., 2018). The comparison conducted in this355

example suggests that xlogit ’s estimates are highly consistent with those provided by existing356

estimation tools. In addition, this example showcased convenient xlogit ’s features that users357

can leverage for data-preprocessing, model specification, and estimation.358

4.2. Artificial dataset359

The artificial dataset contains 4,000 synthetically-generated choices among three inter-360

city transportation modes: bus, car, and train. The explanatory variables that influence the361

choices are the characteristics of the transportation modes that include price, time, conve-362

nience, comfort, food availability (meals), and pet and emissions friendliness. In addition,363

three variables that have no effect on the choices (statistically non-significant variables) were364

included in the dataset in order to simulate a more realistic analysis scenario, where poten-365

tial non-significant variables need to be considered during the specification process. These366
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xlogit Apollo Biogeme

Variable Coeff. StdErr Coeff. StdErr Coeff. StdErr Ratio

ASC Car 0.283 0.056 0.280 0.057 0.278 0.056 1.013
ASC Train -0.572 0.079 -0.578 0.083 -0.585 0.079 0.985
Cost -1.660 0.078 -1.660 0.078 -1.655 0.078 1.002
Time -3.229 0.175 -3.205 0.196 -3.178 0.169 1.011

Standard Deviations
Time 3.649 0.167 3.663 0.179 3.678 0.170 0.995

Log-Likelihood -4359.21 -4359.46 -4360.56

Table 1: Estimation results for the swissmetro dataset.

non-significant variables were modeled by simply not including their values in the artificial367

utilities; therefore, the model estimation process must properly identify these variables as368

statistically equal to zero. The variables for meals and pet and emission friendliness were369

designed with heterogeneous preferences across decision makers, using a normal distribution370

for their coefficients. The Python source code to generate the artificial dataset is available371

in xlogit ’s public GitHub repository at the examples/data folder.372

Figure 4 shows xlogit ’s source code for estimation of coefficients for the artificial dataset.373

The first part imports the data into the Python environment using the pandas package and374

defines the list of variable names to be included in the model. The second part is the actual375

model estimation, which starts when the model.fit method is called along with the input376

data and estimation parameters.377

Figure 4: Estimation code for artificial dataset

Table 2 shows the estimation results for the artificial dataset using xlogit, mlogit and gmnl.378

The “Target” column lists the coefficients that were artificially designed for the different379

explanatory variables, which represent the coefficients to which a good estimation procedure380

should converge to. The results in Table 2 show that the coefficients, standard errors, and381

log-likelihood values estimated by xlogit are highly consistent with those estimated using382

gmnl and mlogit. The results also show a high degree of similarity between the estimated and383

target coefficients, demonstrating the success of xlogit at recovering the designed coefficients,384

similar to mlogit and gmnl. This can be corroborated using the “Ratio” column (average385
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ratio between coefficients across packages), whose values deviate from one by a maximum386

of 0.042, thus indicating high similarity between coefficients. In addition, it can be noted387

that the three variables that were included as non-signicant in the dataset were properly388

identified as such by all the packages, which returned coefficients that are statistically equal389

to zero for the non-significant variables. The successful recovery of the artificially designed390

coefficients and the high level of similarity between the estimation results of xlogit and391

the other two estimation tools demonstrates that xlogit provides consistent and meaningful392

estimation results.393

Target xlogit mlogit gmnl

Variable Coeff. Coeff. StdErr Coeff. StdErr Coeff. StdErr Ratio

Price -1 -1.032 0.155 -1.052 0.178 -1.056 0.185 0.985
Time -1.5 -1.460 0.169 -1.480 0.189 -1.484 0.187 0.989
Convenience 1 0.890 0.141 0.901 0.159 0.903 0.160 0.990
Comfort 1 1.063 0.183 1.087 0.206 1.091 0.204 0.983
Meals 2 1.712 0.197 1.735 0.214 1.735 0.218 0.991
Pet friendly 4 3.875 0.374 3.946 0.429 3.959 0.427 0.986
Emissions -2 -2.016 0.214 -2.059 0.242 -2.064 0.246 0.984
Non-signif. 1 0.073 0.127 0.070 0.151 0.069 0.148
Non-signif. 2 0.016 0.134 0.017 0.165 0.016 0.154
Non-signif. 3 0.019 0.113 0.025 0.141 0.026 0.136

Standard Deviations
Meals 1 0.684 0.237 0.714 0.271 0.731 0.248 0.958
Pet Friendly 1 1.323 0.319 1.379 0.351 1.399 0.341 0.963
Emissions 1 1.004 0.142 1.025 0.142 1.021 0.147 0.989

Log-Likelihood -2278.79 -2278.19 -2278.39

Table 2: Estimation results for the artificial dataset.

4.3. Electricity dataset394

The electricity dataset contains 4,308 choices among four electricity suppliers based on395

the attributes of the offered plans, which include prices(pf), contract lengths(cl), time of day396

rates (tod), seasonal rates(seas), as well as attributes of the suppliers, which include whether397

the supplier is local (loc) and well-known (wk). The data was collected through a survey398

conducted to 361 participants by presenting them with 12 different choice situations. The399

multiple responses per participants were organized into panels. Given that some participants400

answered less than 12 of the choice situations, some panels are unbalanced, which xlogit is401

able to handle. Revelt and Train (2000) provide a detailed description of this dataset.402

Figure 5 shows the source code used with xlogit to estimate the coefficients for the electricity403

dataset. Note that the parameter panels was included in the fit function in order to take404

into account panel structure of this dataset during estimation.405

Table 3 presents the estimation results for the electricity dataset using xlogit, mlogit,406

and gmnl. Comparing the estimated coefficients using the “Ratio” column, the largest ratio407

deviation from one is 0.01, which is minimal, demonstrating a high level of similarity. In408
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Figure 5: Estimation code for electricity dataset

terms of conceptual interpretation, the coefficient estimates obtained from the three packages409

comply with the underlying human decision-making theory. Cost and time variables, such as410

price, seasonal rate and time of the day rate, and contract length, have negative coefficients411

depicting the dis-utility associated with these variables. The positive coefficients for the412

supplier type (i.e., local and well-known suppliers) indicate that the probability of choosing413

a supplier increases if they are local and well-known. The additional coefficients include the414

random effects of the variables on choice behavior. All of the coefficients are assumed to415

be normally distributed. The statistically significant standard deviations of the coefficients416

determine the existence of heterogeneity in individual choice preferences, which is generally417

caused due to some unobserved explanatory variables.418

xlogit mlogit gmnl

Variable Coeff. StdErr Coeff. StdErr Coeff. StdErr Ratio

Price -1.005 0.034 -0.989 0.036 -1.005 0.039 1.000
Contract length -0.240 0.026 -0.228 0.015 -0.242 0.026 0.994
Local supplier 2.285 0.125 2.273 0.090 2.284 0.130 1.000
Well-known supplier 1.709 0.101 1.646 0.072 1.704 0.098 1.002
Time of day rates -9.684 0.321 -9.669 0.316 -9.635 0.345 1.003
Seasonal rates -9.821 0.309 -9.750 0.316 -9.842 0.338 0.999

Standard Deviations
Price 0.233 0.018 0.199 0.013 0.231 0.019 1.013
Contract length 0.422 0.025 0.406 0.021 0.420 0.025 1.004
Local supplier 1.849 0.120 1.822 0.105 1.843 0.123 1.002
Well-known supplier 1.242 0.091 1.251 0.086 1.246 0.097 0.998
Time of day rates 2.484 0.214 2.459 0.138 2.514 0.226 0.992
Seasonal rates 1.517 0.166 1.633 0.138 1.527 0.164 0.997

Log-Likelihood -3886.17 -3886.02 -3886.39

Table 3: Estimation results for the electricity dataset.
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5. Benchmark419

This section describes the benchmark results between xlogit and six open-source estima-420

tion packages to demonstrate the gains in estimation speed and memory management offered421

by the proposed package. First, a benchmark of estimation speed and memory usage between422

xlogit (v0.1.4), mlogit (v1.1.1), PyLogit (v0.2.2), and gmnl (v1.1.3.2) is discussed. Second,423

a benchmark of estimation speed between xlogit (v0.1.4), Biogeme (v3.2.6), Apollo(v0.1.0),424

and mixl(v1.3.1), focusing on parallel processing, is described. The benchmark is split into425

two groups based on parallel processing capabilities: 1) the first group includes Apollo, Bio-426

geme, and mixl, possessing parallel processing capabilities; and 2) the second group includes427

mlogit, PyLogit, and gmnl, without them. The artificial and electricity datasets used for428

the benchmark incorporate a considerable number of records and heterogeneous estimation429

requirements, such as the use of panel data and multiple explanatory variables with mixing430

distributions, which offer a substantial level of complexity to demonstrate xlogit ’s advan-431

tages. The source code, data, and instructions to execute the benchmarks are available in432

xlogit ’s public GitHub repository at the examples/benchmark folder.433

5.1. Benchmark against mlogit, PyLogit, and gmnl434

This benchmark was conducted by iteratively evaluating the effect of a different number435

of random draws on the estimation speed and memory usage for the tested packages on the436

artificial and electricity datasets. The number of tested random draws started at 100 up to437

1,500, with increments of 100. The stopping criteria set by default in the tested packages438

were kept. The benchmarks were executed on a desktop computer with a Linux Ubuntu 20.04439

operating system, an Intel i5 8400 processor, and 16GB of RAM memory. The graphics card440

is a NVIDIA GTX1060 with 6GB of Memory and 1,280 CUDA cores, which is a low-cost441

GPU, in order to show that even with a budget graphics card, xlogit can offer significant442

estimation speed gains. The experiments were executed while running the operating system443

in command line mode (without graphical user interface) to minimize the potential influence444

of other programs on the estimation time. The estimation time was measured as the elapsed445

time between the beginning and end of the estimation. The memory usage was measured as446

the maximum amount of memory used at any point during the estimation process (sampling447

every 50 milliseconds).448

Figure 6 shows the benchmark results for xlogit, mlogit, PyLogit, and gmnl. xlogit was449

evaluated with and without GPU processing, and the results are labeled as “xlogit gpu” and450

“xlogit”, respectively. Additionally, the memory benchmark for xlogit with GPU processing451

includes an evaluation of the RAM and GPU memory used. The results in Figure 6 indicate452

that, in terms of estimation speed, xlogit with GPU processing is significantly faster than453

mlogit, gmnl, and PyLogit, and it scales better when the the number of random draws is454

increased. In addition, it can be noted that, even without using GPU processing, xlogit455

still offers important estimation speed gains compared to the mlogit, gmnl, and PyLogit.456

However, the most significant speed gains are provided by the use of GPU processing, as it457

will be shown later in the “Summary of time benchmark” subsection. This suggests that,458

in terms of memory usage, xlogit requires less memory than mlogit,gmnl, and PyLogit for459

estimation. In addition, the GPU memory required by xlogit is minimal, and it conveniently460

scales linearly with the number of random draws. For both datasets, the GPU memory used461
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is less than 1.5GB, even when using a large number of random draws. This is an important462

result, as it shows that xlogit can run even on graphics cards that may have limited GPU463

memory.

(a) (b)

(c) (d)

Figure 6: Results for benchmark against mlogit, PyLogit, and gmnl.

464

5.2. Benchmark against Apollo, Biogeme, and mixl465

Similar to the previous subsection, the effect of different numbers of random draws on the466

estimation speed of the tested packages was evaluated. However, this benchmark focuses on467

the parallel processing capabilities of Apollo, Biogeme, and mixl by testing their performance468

using 16, 32, and 64 processor cores. The tested number of random draws included 100, 500,469

1,000, and 1,500. This benchmark did not evaluate memory usage, given that profiling470

memory consumption in multi-thread processing is more cumbersome for replication. In471

addition, only the artificial dataset was used in this benchmark in order to reduce execution472

times, as estimation tends to be time-consuming using Apollo, Biogeme, and mixl. The473
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benchmarks were executed on a server with a Linux Centos 7.8 operating system, four Intel474

Xeon E7-4870 processors (80 total cores), and 256GB of RAM memory. During the execution475

of the experiments, no graphical interface or other processes were running on the server, in476

order to minimize the potential influence of external programs on the estimation times. The477

use of this powerful server was necessary to compare the estimation times of Apollo, Biogeme,478

and mixl using multiple processor cores against xlogit using a GPU.479

Figure 7 shows the benchmark results for xlogit, Apollo, Biogeme, and mixl. These results480

indicate that additional processor cores can help Apollo and Biogeme to reduce estimation481

times. However, xlogit is significantly faster than all the compared packages, even when these482

use 64 processor cores, with the additional advantage of a better scaling with the number483

of random draws. The results for “xlogit” and “xlogit gpu” were reused from the previous484

benchmark (on a desktop computer), given that the server used for this benchmark did not485

have a GPU for estimation with xlogit.486

Figure 7: Results for benchmark against Apollo, Biogeme, and mixl.

5.3. Summary of time benchmark487

Table 4 summarizes the estimation time for the artificial dataset using all the tested488

packages. The presented results for Apollo and Biogeme correspond to estimation using 64489

processor cores. The set of columns titled “Estimation time (sec)” show how many seconds490
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the estimation took using the tested packages at different numbers of random draws. The set491

of columns titled “Times slower than xlogit gpu” show how the estimation speed compares to492

xlogit with GPU processing enabled. The “Average” column shows the fraction at which the493

evaluated packages are slower than “xlogit gpu” averaged across the tested random draws.494

These results indicate that xlogit with GPU processing enabled is, on average, 55x faster495

than Apollo, 43x faster than Biogeme, 74x faster than gmnl, 39x faster than mixl, 16x faster496

than mlogit, and 27x faster than PyLogit. It is important to highlight that the presented497

results for xlogit were obtained using a modest GPU with only 1,280 CUDA cores; therefore,498

it is expected that more recent and sophisticated GPUs, which usually contain more than499

5,000 CUDA cores (e.g. NVIDIA RTX 3070 and 3090), will provide considerably more500

performance gains for model estimation with xlogit.501

Estimation time (sec) Times slower than xlogit gpu

Random draws Random draws Average
100 500 1000 1500 100 500 1000 1500

apollo 141.7 206.4 261.8 415.8 83.4 55.8 38.9 44 55.5
biogeme 34.8 172.8 332.8 522.7 20.4 46.7 49.4 55.3 43
gmnl 117 291.5 441.3 803 68.8 78.7 65.6 84.9 74.5
mixl 31.4 156.5 288.4 526.1 18.4 42.3 42.8 55.7 39.8
mlogit 22.2 63.4 109.4 174.8 13.1 17.1 16.3 18.5 16.2
pylogit 45 95.6 172.2 284.8 26.5 25.8 25.6 30.1 27
xlogit 3.5 16.8 33.1 49 2.1 4.5 4.9 5.2 4.2
xlogit gpu 1.7 3.7 6.7 9.5 1 1 1 1 1

Table 4: Summary of estimation times for the artificial dataset.

5.4. Escalating the number draws502

This section describes the convenient scaling that xlogit offers, as it can efficiently esti-503

mate models using hundreds of thousands of random draws on a regular desktop computer.504

Figure 8 (a) and (b) show that, using the setup presented in Section 5.2 (i5-8400 processor,505

16GB RAM, and GTX1060 GPU), xlogit with GPU processing enabled estimates the model506

for the electricity dataset, using a half-million random draws in around 12 minutes, and the507

model for the artificial dataset, using 50,000 draws in around 7 minutes. Additionally, even508

without using GPU processing, xlogit yields reasonable estimation times (below two hours)509

considering the large number of draws that are used. However, the largest performance gains510

are provided by the GPU-enabled estimation.511

In terms of memory usage, Figure 8 (c) and (d) illustrate that xlogit handles GPU512

memory very efficiently, as it uses batch processing of the random draws to avoid overflowing513

the available GPU memory (6GB in this case). When the input data and random draws514

are too big to fit in the GPU memory, xlogit keeps the data in the RAM memory and515

splits it into different processing batches of smaller size, which are iteratively moved to and516

processed in the GPU. This convenient feature enables analysts use xlogit to estimate models517

using thousands and even millions of random draws on devices with low GPU memory, with518

the only limitation being the available RAM memory. For instance, Figure 8 (c) and (d)519

indicate the usage of GPU memory never goes above 6GB, as a result of the batch processing;520
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however, the usage of RAM memory keeps linearly increasing with the number of random521

draws, as RAM needs to constantly store all of the input data and random draws. The522

experiments presented in this section stopped increasing the number of random draws at523

the point where RAM memory usage was getting close to 16GB, as this was the available524

RAM memory in the system used for the experiments. The difference in RAM memory525

usage between the electricity and artificial datasets is due to the number of individuals that526

each dataset contains. The electricity dataset contains 361 individuals, whereas the artificial527

dataset contains 4,000 individuals. Therefore, the artificial dataset requires about 10 times528

more random draws than the electricity dataset at each iteration, which results in 10 times529

larger RAM memory usage.530

(a) (b)

(c) (d)

Figure 8: Performance and memory usage of xlogit for massive number of draws
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6. Conclusions531

This paper introduces xlogit, an open-source Python package for GPU-accelerated estima-532

tion of Mixed Logit models. The package’s features were described and usage examples were533

provided. In addition, this paper describes a benchmark between xlogit and four existing534

estimation packages. The benchmark results suggest that, even using a mid-range graphics535

card and a regular desktop computer, xlogit with GPU processing enabled is, on average,536

55x faster than Apollo, 43x faster than Biogeme, 74x faster than gmnl, 39x faster than mixl,537

16x faster than mlogit, and 27x faster than PyLogit. In addition, the conducted experiments538

suggest that xlogit provides efficient scaling when the number of random draws increases,539

as well as convenient memory usage. The significant reduction in estimation times and the540

ability to escalate to estimation using hundreds of thousands of random draws offered by541

xlogit is expected to help analysts in the model specification process, as more specifications542

can be rapidly tested and evaluated while using a large number of draws for estimation. In543

addition, the accelerated estimation enabled by xlogit is expected to open up additional anal-544

ysis opportunities for approaches that assist the model specification process by strategically545

testing a large set of specifications, which can be efficiently achieved using xlogit.546

The current version of xlogit offers a comprehensive set of tools for the estimation of547

Mixed Logit models, along with extra functionalities to estimate Multinomial and Condi-548

tional Logit models. However, there are other discrete choice models (e.g., Probit, Nested549

Logit, and Latent Class) that can potentially benefit users of the library. Therefore, future550

development efforts will focus on expanding xlogit ’s features to enable the estimation of addi-551

tional Logit-based discrete choice models. Also, the plan for future releases of xlogit include552

the implementation of additional utilities for post-estimation and model specification test-553

ing. Finally, the current version of xlogit only supports GPU acceleration on CUDA-enabled554

NVIDIA graphics cards. Therefore, future efforts will seek to add support to GPU processing555

technologies beyond CUDA and NVIDIA cards.556
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